Dynamic, rhythmic facial expressions and the superior temporal sulcus of macaque monkeys: implications for the evolution of audiovisual speech.
نویسندگان
چکیده
Audiovisual speech has a stereotypical rhythm that is between 2 and 7 Hz, and deviations from this frequency range in either modality reduce intelligibility. Understanding how audiovisual speech evolved requires investigating the origins of this rhythmic structure. One hypothesis is that the rhythm of speech evolved through the modification of some pre-existing cyclical jaw movements in a primate ancestor. We tested this hypothesis by investigating the temporal structure of lipsmacks and teeth-grinds of macaque monkeys and the neural responses to these facial gestures in the superior temporal sulcus (STS), a region implicated in the processing of audiovisual communication signals in both humans and monkeys. We found that both lipsmacks and teeth-grinds have consistent but distinct peak frequencies and that both fall well within the 2-7 Hz range of mouth movements associated with audiovisual speech. Single neurons and local field potentials of the STS of monkeys readily responded to such facial rhythms, but also responded just as robustly to yawns, a nonrhythmic but dynamic facial expression. All expressions elicited enhanced power in the delta (0-3Hz), theta (3-8Hz), alpha (8-14Hz) and gamma (> 60 Hz) frequency ranges, and suppressed power in the beta (20-40Hz) range. Thus, STS is sensitive to, but not selective for, rhythmic facial gestures. Taken together, these data provide support for the idea that that audiovisual speech evolved (at least in part) from the rhythmic facial gestures of an ancestral primate and that the STS was sensitive to and thus 'prepared' for the advent of rhythmic audiovisual communication.
منابع مشابه
Lateralization for dynamic facial expressions in human superior temporal sulcus
Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing process...
متن کاملFacial Expressions and the Evolution of the Speech Rhythm
In primates, different vocalizations are produced, at least in part, by making different facial expressions. Not surprisingly, humans, apes, and monkeys all recognize the correspondence between vocalizations and the facial postures associated with them. However, one major dissimilarity between monkey vocalizations and human speech is that, in the latter, the acoustic output and associated movem...
متن کاملFaces in motion: selectivity of macaque and human face processing areas for dynamic stimuli.
Face recognition mechanisms need to extract information from static and dynamic faces. It has been hypothesized that the analysis of dynamic face attributes is performed by different face areas than the analysis of static facial attributes. To date, there is no evidence for such a division of labor in macaque monkeys. We used fMRI to determine specializations of macaque face areas for motion. F...
متن کاملThe evolution of speech: vision, rhythm, cooperation.
A full account of human speech evolution must consider its multisensory, rhythmic, and cooperative characteristics. Humans, apes, and monkeys recognize the correspondence between vocalizations and their associated facial postures, and gain behavioral benefits from them. Some monkey vocalizations even have a speech-like acoustic rhythmicity but lack the concomitant rhythmic facial motion that sp...
متن کاملDynamic and static facial expressions decoded from motion-sensitive areas in the macaque monkey.
Humans adeptly use visual motion to recognize socially relevant facial information. The macaque provides a model visual system for studying neural coding of expression movements, as its superior temporal sulcus (STS) possesses brain areas selective for faces and areas sensitive to visual motion. We used functional magnetic resonance imaging and facial stimuli to localize motion-sensitive areas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 31 10 شماره
صفحات -
تاریخ انتشار 2010